Use the search box (command + f on macs or control + f on windows) to search for whichever function you're looking for (try "1-prop-z-test")
Statistics functions can be accessed in one of two ways:
- You can type them directly in the input bar, using either the function name (ex: geometricdist) or its shortcut (ex: gdist)
- You can use the buttons found under the "stats" category button, as seen below, which has 4 subcategories: 1) Basic (basic stats functions), 2) Advanced (regressions and more), 3) Distributions and 4) Tests (Hypothesis Testing)
Webapp:
Mobile:
Below is a list of all ClassCalc statistics functions and how to use them:
Lists
-
- To input a list, you can either:
- type in "[]" or "list"
- click "add" > list
- input: comma-separated values
- output: list (can be stored as a constant, like a or b, and then used in other functions)
- example:
- using lists to compute multiple equations at once:
- using lists to plot multiple functions at once:
- using lists to compute multiple equations at once:
- To input a list, you can either:
Tables
- to input a table you can either:
- type "table"
- click "add" > table
- transform a function into a table:
- enter your function
- hold press the color menu and press "table convert"
- enjoy your table
- enter your function
- input: rows and columns of values
- output: points plotted on the graph
- extra options:
- regress any column against the first column
- connect points into a line (or create a Frequency Polygon)
- change table headers
- table headers are constants that represent each column. Constants can be defined in the table header (column 1 below) or they can be defined elsewhere (in another column or another input entirely). Table headers are smart, so you can manipulate them like so:
- table headers are constants that represent each column. Constants can be defined in the table header (column 1 below) or they can be defined elsewhere (in another column or another input entirely). Table headers are smart, so you can manipulate them like so:
- use table columns as lists
- regress any column against the first column
Basic Statistics
- mean
- input: comma-separated values
- output: mean
- median
- input: comma-separated values
- output: median
- mode
- input: comma-separated values
- output: mode
- min
- input: comma-separated values
- output: minimum of the inputted values
- max
- input: comma-separated values
- output: maximum of the inputted values
- range
- input: comma-separated values
- output: largest value inputed minus the smallest
- combination (nCr)
- input:
- n - total number of items in the given set
- r - number of items required in the subset created from the main set
- output: combination of the two inputted values
- input:
- permutation (nPr)
- input:
- n - total number of items in the given set
- r - number of items required in the subset created from the main set
- output: permutation of the two inputted values
- input:
- factorial (!)
- input: value
- output: factorial
- standard deviation (stdev)
- input: comma-separated values
- output:
- σ - population standard deviation
- s - sample standard deviation
- variance
- input: comma-separated values
- output:
- σ2 - population variance
- s2 - sample variance
- sort
- input: comma-separated values
- output: inputted values, in ascending order
Advanced Statistics
- linear regression (lin-reg) [Shortcut: "lin"]
- input:
- list1
- list2
- output:
- the line of best fit - regressed against a linear model, y=mx+b
- r - correlation coefficient
- r2 - correlation of determination
- extra options: plot residuals
- or
- input:
- polynomial regression (poly-reg) [Shortcut: "poly"]
- input:
- list1
- list2
- degree of polynomial ("2" for quadratic, "3" for cubic, etc)
- output:
- the curve of best fit - regressed against the polynomial model specified by the input
- extra options: plot residuals
- input:
- exponential regression (exp-reg) [Shortcut: "exp"]
- input:
- list1
- list2
- output:
- the exponential curve of best fit - regressed against an exponential model, y=abx
- extra options:
- plot residuals
- input:
- logarithmic regression (lg-reg) [Shortcut: "lg"]
- input:
- list1
- list2
- output:
- the logarithmic curve of best fit - regressed against a logarithmic model, y=a+b*ln(x))
- extra options: plot residuals
- input:
- random integer (rand-int) [Shortcut: "rint"]
- input:
- min
- max
- n - number of random integers to generate
- output:
- array of random integers within the bounds set by min and max
- input:
- random number (rand-num) [Shortcut: "rnum"]
- input:
- min
- max
- n - number of random numbers to generate
- output:
- array of random numbers within the bounds set by min and max
- input:
- random binomial (rand-binomial) [Shortcut: "rbin"]
- input:
- p - probability of success
- t - trials
- n -number of random binomial values to generate
- output:
- array of random values from binomial distribution
- input:
- random normal (rand-norm) [Shortcut: "rnorm"]
- input:
- µ - mean
- σ - standard deviation
- n - number of random normal values to generate
- output:
- array of random values from normal distribution
- input:
- 1-variable-statistics (1-var-stats) [Shortcut: "1varstats", "onevarstats", "ovs" or "1vs"]
- input: list
- output:
- x̅ - average
- Σx - sum
- Σx² - sum of the squares
- Sx - sample standard deviation
- σx - population standard deviation
- n - number of elements in the list
- Xmin - minimum value
- Q1 - first quartile
- Med - median
- Q3 - third quartile
- Xmax - max value
- SSx - Sum of squared deviations
- 2-variable-statistics (2-var-stats) [Shortcut: "2varstats", "twovarstats", "tvs" or "2vs"]
- input: listX, listY
- output:
- Σx - sum of first list
- Σx² - sum of the squares of first list
- x̅ - average of first list
- Sx - sample standard deviation of first list
- σx - population standard deviation of first list
- Xmin - minimum value of first list
- Xmax - maximum value of first list
- Σy - sum of second list
- Σy² - sum of the squares of second list
- ȳ - average of second list
- Sy - sample standard deviation of second list
- σy - population standard deviation of second list
- Ymin - minimum value of second list
- Ymax - maximum value of second list
- Σxy - sum of both lists
- n - number of elements in both lists
- r - Pearson’s product-moment correlation coefficient
- Q1x - First quartile of first list
- Medx - Median of first list
- Q3x - Third quartile of first list
- Q1y - First quartile of second list
- Medy - Median of second list
- Q3y - Third quartile of second list
- SSx - Sum of squared deviations for first list
- SSy - Sum of squared deviations for second list
- frequency list
- Input:
- L1 - List of values
- L2 - List of Frequencies
- Output:
- A new frequency list which takes each value in L1, duplicates it as many times as is specified by its corresponding frequency in L2.
- Input:
- Note: If the new list is stored under a constant (like "a" in the above example), it can then be used in other functions, like so:
Distributions & Plots
- Note: All distributions have the following extra options:
- Using the magnifying glass to auto-scale the axes to focus the distribution
- finding the area under a curve using the CDF sub-field
- appending a ".cdf", ".pdf" or ".inversecdf"
- Using the magnifying glass to auto-scale the axes to focus the distribution
- normal distribution (normal-dist) [Shortcut: "ndist"]
- input:
- µ - population mean
- σ - population standard deviation
- output: normal distribution
- input:
- t-distribution (t-dist) [Shortcut: "tdist"]
- input:
- DoF - Degrees of Freedom
- output: t-distribution
- input:
- binomial distribution (binomial-dist) [Shortcut: "bdist"]
- input:
- n - # of trials
- p - probability of success
- output: binomial distribution
- input:
- geometric distribution (geometric-dist) [Shortcut: "gdist"]
- input:
- p - probability of success
- output: geometric distribution
- input:
- poisson-distribution (poisson-dist) [Shortcut: "pdist"]
- input:
- µ - population mean
- output: poisson distribution
- input:
- chi-square-distribution (χ2-dist) [Shortcut: "cdist"]
- input:
- DoF - Degrees of Freedom
- output: chi-squared distribution
- input:
- cumulative distribution function (.cdf)
- input:
- lower bound
- upper bound
- output:
- the area under the curve between the two inputted values under the given distribution
- input:
- probability density function (.pdf)
- input: x value
- output: the associated y value (probability) on the given distribution
- inverse cumulative distribution function (.inversecdf) (Also known as "invNorm" or "inverseNorm")
- input: p - probability of outcome
- output: z-score with that tail probability
- histogram
- input: list
- output: histogram
- options:
- Change Bind Width
- Change Alignment
- boxplot
- input: list
- output: boxplot
- Options:
- trim outliers
- normal probability plot (NPP or QQ Plot)
- input: list of values
- output:
- normal probability plot
- line of best fit
- r - correlation coefficient
- option:
- Switch axis of Normal Quantile
Statistical Tests (Hypothesis Testing)
- ZTest
- input:
- stats:
- µ - population mean
- σ - population standard deviation
- x̅ - sample mean
- n - sample size
- data:
- µ - population mean
- σ - population standard deviation
- list
- stats:
- output:
- z-score
- p-values:
- <
- >
- ≠
- Example:
- If you inputed data, as opposed to stats, you'll also get:
- x̅ - sample mean
- n - sample size
- Sx - sample standard deviation
- input:
- 1PropZTest [Shortcut: "1pzt" or "opzt"]
- input:
- P0 - value of null hypothesis
- x - success count in sample
- n - total sample size
- output:
- z score
- p-values:
- <
- >
- ≠
- p̂ - sample proportion calculated as x/n
- Example:
- input:
- 2PropZTest [Shortcut: "2pzt" or "tpzt"]
- input:
- x1 - success count in the first sample
- n1 - size of the first sample
- x2 - success count in the second sample
- n2 - size of the second sample
- output:
- z-score
- p-values:
- <
- >
- ≠
- p̂ 1 - first sample proportion calculated as x1/n1
- p̂ 2 - second sample proportion calculated as x2/n2
- p̂ - total sample proportion
- input:
- 2SampleZTest [Shortcut: "2szt" or "tszt"]
- input:
- stats:
- σ1 - first population standard deviation
- σ2 - second population standard deviation
- x̅1 - first sample mean
- n1 - first sample size
- x̅2 - second sample mean
- n2 - second sample size
- data:
- σ1 - first population standard deviation
- σ2 - second population standard deviation
- list1
- list2
- stats:
- output:
- z-score
- p-values:
- <
- >
- ≠
- If you inputed as data, you'll also get:
- x̅1 - first sample mean
- x̅2 - second sample mean
- Sx1 (sample standard deviation of first list)
- Sx2 (sample standard deviation of second list)
- n1 - first sample size
- n2 - second sample size
- input:
- ZInterval [Shortcut: "zint"]
- input:
- stats
- σ - population standard deviation
- x̅ - sample mean
- n - sample size
- c-level - confidence level
- data
- σ - population standard deviation
- list
- c-level - confidence level
- stats
- output:
- z-interval
- If you inputted data (as opposed to stats) you also get:
- x̅ - sample mean
- n - sample size
- Sx - sample standard deviation
- input:
- 1PropZInterval [Shortcut: "1pzi" or "opzi"]
- input:
- x - number of positive outcomes
- n - total sample size
- c-level - confidence level
- output:
- z-interval
- p̂ - sample proportion calculated as x/n
- ME - margin of error
- input:
- 2PropZInterval [Shortcut: "2pzi" or "tpzi"]
- input:
- x̅1 - first sample mean
- n1 - first sample size
- x̅2 - second sample mean
- n2 - second sample size
- c-level - confidence level
- output:
- z-interval
- p̂ 1 - first sample proportion calculated as x1/n1
- p̂ 2 - second sample proportion calculated as x2/n2
- p̂ Diff: p̂ 1 – p̂ 2
- ME - margin of error
- input:
- 2SampleZInterval [Shortcut: "2szi" or "tszi"]
- input:
- stats:
- σ1 - population standard deviation of first list
- σ2 - population standard deviation of second list
- x̅1 - first sample mean
- n1 - first sample size
- x̅2 - second sample mean
- n2 - second sample size
- c-level - confidence level
- data:
- σ1 - population standard deviation of first list
- σ2 - population standard deviation of second list
- list1
- list2
- c-level - confidence level
- stats:
- output:
- z-interval
- x̄ Diff - Difference between the two sample means (x̅1 - x̅2)
- ME - Margin of Error
- If you inputted data (as opposed to stats) you also get:
- x̅1 - first sample mean
- x̅2 - second sample mean
- Sx1 - sample standard deviation of first list
- Sx2 - sample standard deviation of second list
- n1 - first sample size
- n2 - second sample size
- input:
- TTest
- input:
- Stats
- µ - population mean
- x̅ - sample mean
- Sx - sample standard deviation
- n - sample size
- Data
- µ - population mean
- list
- Stats
- output:
- Data:
- t-statistic
- p-values:
- <
- >
- ≠
- DoF - Degrees of Freedom
- If you inputted data (as opposed to stats) you also get:
- x̅ - sample mean
- Sx - sample standard deviation
- n - sample size
- Data:
- input:
- 2SampleTTest[Shortcut: "2stt" or "tstt"]
- input:
- Stats:
- x̅1 - first sample mean
- Sx1 - sample standard deviation of first list
- n1 - first sample size
- x̅2 - second sample mean
- Sx2 - sample standard deviation of second list
- n2 - second sample size
- pooled (yes/no)
- Data:
- list1
- list2
- pooled (yes/no)
- Stats:
- output:
- t-statistic
- p-values:
- <
- >
- ≠
- DoF - Degrees of Freedom
- If you inputted data (as opposed to stats) you also get:
- x̅1 - first sample mean
- x̅2 - second sample mean
- Sx1 - sample standard deviation of first list
- Sx2 - sample standard deviation of second list
- n1 - first sample size
- n2 - second sample size
- input:
- TInterval[Shortcut: "tint"]
- input:
- stats:
- x̅ - sample mean
- Sx - sample standard deviation
- n - sample size
- c-level - confidence level
- data:
- list
- c-level - confidence level
- stats:
- output:
- t-interval
- DoF - Degrees of Freedom
- If you inputted data (as opposed to stats) you also get:
- x̅ - sample mean
- Sx - sample standard deviation
- n - sample size
- input:
- 2SampleTInterval[Shortcut: "2sti" or "tsti"]
- input:
- Stats:
- x̅1 - first sample mean
- Sx1 - sample standard deviation of first list
- n1 - first sample size
- x̅2 - second sample mean
- Sx2 - sample standard deviation of second list
- n2 - second sample size
- c-level - confidence level
- pooled (yes/no)
- Data:
- list1
- list2
- c-level - confidence level
- pooled (yes/no)
- Stats:
- output:
- t-interval
- DoF - Degrees of Freedom
- x̄ Diff - Difference between the two sample means (x̅1 - x̅2)
- ME - Margin of Error
- If you inputted data (as opposed to stats) you also get:
- x̅1 - first sample mean
- x̅2 - second sample mean
- Sx1 - sample standard deviation of first list
- Sx2 - sample standard deviation of second list
- n1 - first sample size
- n2 - second sample size
- input:
- LinRegTTest [Shortcut: "lrt"]
- input:
- list1
- list2
- output:
- t-statistic
- p-values:
- <
- >
- ≠
- DoF - Degrees of Freedom
- a - constant from y=ax+b
- b - constant from y=ax+b
- s - standard error
- r - correlation coefficient
- r2 - correlation of determination
- SES - standard error of the slope
- Residuals
- input:
- LinRegTIntervalShortcut: "lri"]
- input:
- list1
- list2
- c-level - confidence level
- output:
- t-interval
- DoF - Degrees of Freedom
- a - constant from y=ax+b
- b - constant from y=ax+b
- s - standard error
- r - correlation coefficient
- r2 - correlation of determination
- SES - standard error of the slope
- Residuals
- ME- Margin of Error
- input:
- ChiSquareTest (χ2 test) [Shortcut: "cst" or "ctest"]
- input:
- Observed Matrix (inputted as an array of lists)**
- output:
- Expected Matrix (displayed as an array of lists)**
- χ2-value
- p-value
- DoF - Degrees of Freedom
- **This 3 X 3 matrix would be inputted/outputted as this array of lists [[1,2,3],[4,5,6],[7,8,9]]
- input:
- ChiSquareGoodnessOfFitTest (χ2-gof-test) [Shortcut: "gof"]
- input:
- Observed List
- Expected List
- DoF - Degrees of Freedom
- output:
- χ2-value
- p-value
- input:
- ANOVA [Shortcut: "anv" or "ano"]
- input:
- list1
- list2
- list3
- ect...
- output:
- F-statistic
- p-value
- Factor (Numerator):
- DoF - Degrees of Freedom
- SS - Sum of Squares
- MS - Mean Square
- Error (Denominator)
- DoF - Degrees of Freedom
- SS - Sum of Squares
- MS - Mean Square
- CLower - Lower limit of 95% confidence intervals for the mean of each input list
- CUpper - Upper limit of 95% confidence intervals for the mean of each input list
- X̅list - Outputs a list of means for each inputted list: [mean(L1), mean(L2)]
- input:
Comments
0 comments
Please sign in to leave a comment.